Abstract
This work deals with a control strategy to regulate homogeneous reaction systems in reactors equipped with a cooling jacket. The reaction system is expressed in terms of vessel extents and viewed as a single-input (the inlet coolant temperature), two-output (the reactor and jacket temperatures) plant. The proposed strategy enforces trajectory tracking and ensures zero-error tracking between the two outputs and their time-varying references. Once the reactor temperature reference is set, the other reference is inferred using the heat-transfer equation, which generates a feedback law to adjust the inlet coolant temperature and stabilizes the reactor at the desired equilibrium point. The approach is illustrated on a free-radical polymerization reaction system that exhibits steady-state multiplicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.