Abstract

In the paper, a control algorithm for output regulation problem of nonlinear pure-feedback systems with unknown functions is proposed. The main contributions of the proposed method are not only to avoid Assumptions of unknown functions, but also adopt a non-backstepping control scheme. First, a high-gain state observer with disturbance signals is designed based on the new system that has been converted. Second, an internal model with the observer state is established. Finally, based on Lyapunov analysis and the neural network approximation theory, the control algorithm is proposed to ensure that all the signals of the closed-loop system are the semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Three simulation studies are worked out to show the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.