Abstract

AbstractIn order to restrain global warming and to realize a sustainable global energy system, further enhancements in energy efficiency are required. One reliable technology for reducing greenhouse gas emissions and the consumption of fossil fuel is thermoelectric technology, which can directly convert heat into electricity and consequently increases the energy conversion efficiency of power generation by combustion. Magnesium silicide (Mg2Si) is a promising candidate for a thermal-to-electric energy-conversion material at operating temperatures ranging from 500 to 800 K. Mg2Si exhibits many promising characteristics, such as the abundance of its constituent elements in the earth’s crust and the non-toxicity of its processing by-products, resulting in freedom from concerns regarding prospective extended restrictions on hazardous substances. The efficiency of a thermoelectric device is characterized by the dimensionless figure of merit, ZT. It is well known that several kinds of dopants are effective in improving the thermoelectric performance of n-type Mg2Si. With Bi-doped n-type Mg2Si, we have achieved a maximum value of the dimensionless figure-of-merit ZT of ˜1.0 at ˜ 850 K. However, the correlation between the ZT values and the power generation characteristics, which is essential to understand in order to design a structure for a TE power generation module, has not been sufficiently investigated. In order to design a structure for a thermoelectric module using Mg2Si, we examined the correlation between the ZT values and the power-output of a single element using Mg2Si (ZT = 0.6) and Mg2Si doped with donor impurities such as Al and/or Bi (ZT = 0.65˜0.77). The measured single element was 2×2 mm2 in section and 10 mm long. Additionally, we developed and evaluated a new architecture based on a ‘unileg’ structure Mg2Si TE power generation module, which can improve the module lifetime and simplify its manufacture. As a starting material for the fabrication of the single element and the TE modules, pre-synthesized polycrystalline Mg2Si, fabricated by UNION MATERIAL was used. The material was sintered using a plasma-activated sintering (PAS) technique, and, at the same time, Ni electrodes were formed on the Mg2Si by employing of a monobloc PAS technique. The thermoelectric power-outputs were measured under a temperature difference, ΔT, ranging from 100-to-500 K by using UNION MATERIAL UMTE-1000M. The observed power-output for single element of Mg2Si (ZT = 0.6), 2 at % Bi-doped Mg2Si (ZT = 0.65) and 1at % Bi + 1at % Al-doped Mg2Si (ZT = 0.77) were 23.2 mW, 13.6 mW and 19.4 mW respectively at ΔT = 500 K (between 873 K and 373 K). For the new architecture based on the unileg structure thermoelectric module, the observed value for power-output-per-unit-area was 12 mW/mm2 at ΔT = 500 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.