Abstract

This paper considers iterative learning control law design using the theory of linear repetitive processes. This setting enables trial-to-trial error convergence and along-the-trial performance to be considered simultaneously in the design. It is also shown that this design extends naturally to include robustness to unmodeled plant dynamics. The results from experimental application of these laws to a gantry robot performing a pick and place operation are given, together with a discussion of the positioning of this approach relative to alternatives and possible further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.