Abstract
Many robot controllers require not only joint position measurements but also joint velocity measurements; however, most robotic systems are only equipped with joint position measurement devices. In this paper, a new output feedback tracking control approach is developed for the robot manipulators with model uncertainty. The approach suggested herein does not require velocity measurements and employs the adaptive fuzzy logic. The adaptive fuzzy logic allows us to approximate uncertain and nonlinear robot dynamics. Only one fuzzy system is used to implement the observer-controller structure of the output feedback robot system. It is shown in a rigorous manner that all the signals in a closed loop composed of a robot, an observer, and a controller are uniformly ultimately bounded. Finally, computer simulation results on three-link robot manipulators are presented to show the results which indicate good position tracking performance and robustness against payload uncertainty and external disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.