Abstract
This paper investigates the output-feedback stabilization for stochastic nonlinear systems with both Markovian switching and time-varying powers. Specifically, by developing a novel dynamic gain method and using the Itô formula of Markovian switching systems, a reduced-order observer with a dynamic gain and an output-feedback controller are designed. By using advanced stochastic analysis methods, we show that the closed-loop system has an almost surely unique solution and the states are regulated to the origin almost surely. A distinct feature of this paper is that even though there is no Markovian switching, our design is also new since it can deal with nonlinear growth rate, while the existing results can only deal with constant growth rate. Finally, the effectiveness of the design method is verified by a simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.