Abstract

SummaryThis paper studies the output‐feedback model predictive control (MPC) design problem for linear systems with multiplicative and additive random uncertainty. We first present an off‐line optimization algorithm to optimize feedback gains of the observer and the dual‐mode control policy. After that, by defining a cuboid tube whose center and boundary are both time‐varying variables, we develop a set sequence with increased freedom to contain stochastic system trajectories. A quadratic performance function with analytic upper and lower bounds is minimized such that it decreases exponentially to a finite range under the expectation. The resulting MPC algorithms are proved to guarantee practically stochastic input‐to‐state stability. A numerical example of the wind turbine model illustrates the properties of the MPC algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.