Abstract

This paper describes some experimental results concerning the practical implementation of a recently proposed nonlinear output-feedback control technique based on the higher-order sliding mode approach. The considered technique is applied to the motion control problem for an underwater vehicle prototype that is equipped with a special propulsion system based on hydro-jets with variable-section nozzles. To cope with the heavy uncertainties affecting the prototype dynamics the output-feedback control system has been developed by means of an observer-controller that combines a second-order sliding-mode controller and a second-order sliding-mode differentiator. The reported experiments show that the proposed approach is capable of guaranteeing fast and accurate response under several operating conditions. The control system design procedure, and the main implementation issues, are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call