Abstract
AbstractIn this paper, we consider the problem of autonomous underwater vehicle (AUV) station keeping (SK) in shallow water area. During SK, an AUV is required to maintain position and orientation with respect to a fixed reference point at the sea floor. When AUV operates in shallow water, high‐frequency disturbances due to waves will significantly affect the motion of the AUV. In order to derive wave disturbance information for control purposes, a nonlinear observer is first designed to estimate the shallow water wave velocities and AUV relative velocities by using position and attitude measurement. Using the observer estimates, a nonlinear output feedback controller is subsequently synthesized by applying observer backstepping technique. Global exponential stability (GES) of the proposed nonlinear observer–controller design is proved through Lyapunov stability theory. Simulation studies on a model based on an actual AUV were performed to verify the performance of the proposed nonlinear observer and output feedback controller. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.