Abstract

This paper studies output feedback control of hydraulic actuators with modified continuous LuGre model based friction compensation and model uncertainty compensation. An output feedback adaptive robust controller is constructed which combines the adaptive control part and the robust control part seamlessly. The adaptive part is constructed to handle the parametric uncertainties existed in the model. The residuals coming from parameter adaption and the unmodeled dynamics are taken into consideration by the robust part. Since only the position signal is available, the velocity, pressure, and internal friction states are obtained by observation or estimation. The errors coming from observation and estimation are also dealt with the robust part. Furthermore, the convergence of the closed-loop controller–observer scheme is achieved by the Lyapunov method in the presence of parametric uncertainties only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed controller–observer scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.