Abstract
A single four-level atom interacting with two-mode cavities is investigated. Under large detuning condition, we obtain the effective Hamiltonian which is unitary squeezing operator of two-mode fields. Employing the input–output theory, we find that the entanglement and squeezing of the output fields can be achieved. By analyzing the squeezing spectrum, we show that asymmetric detuning and asymmetric atomic initial state split the squeezing spectrum from one valley into two minimum values, and appropriate leakage of the cavity is needed for obtaining output entangled fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.