Abstract

In this study, the problem of output consensus control for high-order continuous-time linear multi-agent systems with interval time-varying delays is investigated. The observability decomposition technique is employed to design the output consensus protocols which are the collections of delayed output information from neighbouring agents. On the basis of invertible transformations, output consensus for the concerned dynamical agents is transformed into the problem of asymptotical stability analysis for some lower dimensional subsystems. By introducing the prescribed convergence rate scalar into the constructed delay-dependent Lyapunov functionals, the framework for output consensus analysis is theoretically derived. Benefitting from the method of slack matrix variables, sufficient conditions are obtained in terms of linear matrix inequalities to design the protocol gain matrices which can guarantee the property of output consensus. Moreover, the output consensus function determined merely by the initial states of dynamic agents and consensus protocol is presented without the influences of time-varying delays. Numerical examples are exploited to illustrate the effectiveness of the derived results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.