Abstract

We present an output-based mesh adaptation strategy for Navier–Stokes simulations on deforming domains. The equations are solved with an arbitrary Lagrangian–Eulerian (ALE) approach, using a discontinuous Galerkin finite-element discretization in both space and time. Discrete unsteady adjoint solutions, derived for both the state and the geometric conservation law, provide output error estimates and drive adaptation of the space–time mesh. Spatial adaptation consists of dynamic order increment or decrement on a fixed tessellation of the domain, while a combination of coarsening and refinement is used to provide an efficient time step distribution. Results from compressible Navier–Stokes simulations in both two and three dimensions demonstrate the accuracy and efficiency of the proposed approach. In particular, the method is shown to outperform other common adaptation strategies, which, while sometimes adequate for static problems, struggle in the presence of mesh motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.