Abstract

Inspired by a formal equivalence between the Hopfield model and restricted Boltzmann machines (RBMs), we design a Boltzmann machine, referred to as the dreaming Boltzmann machine (DBM), which achieves better performances than the standard one. The novelty in our model lies in a precise prescription for intralayer connections among hidden neurons whose strengths depend on features correlations. We analyze learning and retrieving capabilities in DBMs, both theoretically and numerically, and compare them to the RBM reference. We find that, in a supervised scenario, the former significantly outperforms the latter. Furthermore, in the unsupervised case, the DBM achieves better performances both in features extraction and representation learning, especially when the network is properly pretrained. Finally, we compare both models in simple classification tasks and find that the DBM again outperforms the RBM reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.