Abstract

The out-of-plane thermal conductivity of silicon thin film doped with germanium is calculated by non-equilibrium molecular dynamics simulation using the Stillinger-Weber potential model. The silicon thin film is doped with germanium atoms in a random doping pattern with a doping density of 5% and 50% respectively. The effect of silicon thin film thickness on its thermal conductivity is investigated. The simulated thicknesses of silicon thin film doped with germanium range from 2.2 to 10.9 nm at an average temperature 300K. The simulation results indicate that the out-of-plane thermal conductivity of the silicon thin film doped with germanium decreases linearly with the decreasing film thickness. As for the film thickness of 9.8nm and the average temperature ranging from 250 to 1000 K, the investigation shows that the temperature dependence of the film thermal conductivity is not sensitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call