Abstract

Absence of spatial inversion symmetry allows a nonequilibrium spin polarization to be induced by electric currents, which, in two-dimensional systems, is conventionally analyzed using the Rashba model, leading to in-plane spin polarization. Given that the material realizations of out-of-plane current-induced spin polarization (CISP) are relatively fewer than that of in-plane CISP, but important for perpendicular-magnetization switching and electronic structure evolution, it is highly desirable to search for new prototypical materials and mechanisms to generate the out-of-plane carrier spin and promote the study of CISP. Here, we propose that an out-of-plane CISP can emerge in ferromagnetic transition-metal dichalcogenide monolayers. Taking monolayer [Formula: see text] and [Formula: see text] as examples, we calculate the out-of-plane CISP based on linear-response theory and first-principles methods. We deduce a general low-energy model for easy-plane ferromagnetic transition-metal dichalcogenide monolayers and find that the out-of-plane CISP is due to an in-plane magnetization together with intrinsic spin-orbit coupling inducing an anisotropic out-of-plane spin splitting in the momentum space. The CISP paves the way for magnetization rotation and electric control of the valley quantum number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call