Abstract

Machine learning (ML) models often fail with data that deviates from their training distribution. This is a significant concern for ML-enabled devices as data drift may lead to unexpected performance. This work introduces a new framework for out of distribution (OOD) detection and data drift monitoring that combines ML and geometric methods with statistical process control (SPC). We investigated different design choices, including methods for extracting feature representations and drift quantification for OOD detection in individual images and as an approach for input data monitoring. We evaluated the framework for both identifying OOD images and demonstrating the ability to detect shifts in data streams over time. We demonstrated a proof-of-concept via the following tasks: 1) differentiating axial vs. non-axial CT images, 2) differentiating CXR vs. other radiographic imaging modalities, and 3) differentiating adult CXR vs. pediatric CXR. For the identification of individual OOD images, our framework achieved high sensitivity in detecting OOD inputs: 0.980 in CT, 0.984 in CXR, and 0.854 in pediatric CXR. Our framework is also adept at monitoring data streams and identifying the time a drift occurred. In our simulations tracking drift over time, it effectively detected a shift from CXR to non-CXR instantly, a transition from axial to non-axial CT within few days, and a drift from adult to pediatric CXRs within a day-all while maintaining a low false positive rate. Through additional experiments, we demonstrate the framework is modality-agnostic and independent from the underlying model structure, making it highly customizable for specific applications and broadly applicable across different imaging modalities and deployed ML models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.