Abstract

With a wealth of biodiversity, a long tradition of agriculture-based industries, and an established medical and biotechnological research and development community, Thailand has become an attractive location for life sciences investment. The large amount of data generated in many areas of life sciences requires visualization, management, and analysis, principally through bioinformatics. To become successful, Thailand's research community should emphasize establishing core technologies, such as genomics and bioinformatics, to boost development of agriculture, food processing, and biomedical research. The Thai government realized the importance of this field and created a national policy to greatly increase Thailand's participation in bioinformatics and genomics, budgeting for specific development goals in research infrastructure, education, and sustainable human resources. Thailand has not lagged behind in bioinformatics research activity and recognizes the importance of bioinformatics through increased policy awareness, human resources development, and increased research activity involving genomic-scale data generation and computational analyses. Many applications of genomics and bioinformatics to biomedical research and development in Thailand have progressed substantially during the past few years, leading to successful applications in some specific local areas. However, the applications to other important areas, such as agriculture, are hampered by the limited availability of genomic sequence data and the lack of necessary biochemical/physiological information. With the advent of more and more genomic information in public databases, Thailand's research community is striving to adopt comparative genomics to obtain information of direct relevance to the country's health and industrial needs. This article highlights Thailand's contribution to genomics and bioinformatics in the following areas: (1) policy support from the Thai government, (2) capacity building through infrastructure/education/human resources, and (3) research and development in genomics and computational biology. (See Box 1 for Authors' Biographies). Box 1. Authors' Biographies Wannipha Tongsima, M.S., obtained her master's degree in Industrial Microbiology from Chulalongkorn University, Thailand. She was involved in founding the Bioinformatics research program in BIOTEC. To reinforce the research activity in this area, she also helped organize the first International Conference on Computational Biology (InCoB), held in Bangkok in 2002. Later, she was appointed to manage one of the first BIOTEC ethnic-specific human genetic variation programs, named the Thailand SNP Discovery Project. She works as a Genomic Medicine program coordinator for the Cluster and Program Management Office (CPMO) of the National Science and Technology Development Agency (NSTDA), which is an umbrella organization of four other national research centers in Thailand, including BIOTEC. Sissades Tongsima, Ph.D., received his doctoral degree in Computer Science and Engineering from the University of Notre Dame, Indiana, United States. He has worked for the National Electronics and Computer Technology Center on High Performance Computing (HPC) and Computational Grid. During 2002–2004, he cochaired the Asia-Pacific Advanced Network (APAN) Grid Working Group. In 2003, he shifted his research direction from HPC architecture to bioinformatics research, when he started working for BIOTEC, and constructed the ThaiSNP database. His main research interest is in developing algorithms and databases for analyzing various research projects on human genetic variation. He currently heads the Genome Institute biostatistics and informatics laboratory at BIOTEC. Prasit Palittapongarnpim, M.D., earned his medical degree from Mahidol University, Thailand, and his B.S. in Mathematics from Ramkumhang University, Thailand. He is a Fellow of the Royal College of Pediatricians of Thailand and also an Associate Professor in Microbiology at Mahidol University, where he has conducted research focusing on tuberculosis. While holding a Deputy Director position, he initiated the Bioinformatics research program at BIOTEC in 2002 and led the organization of the first InCoB conference in 2002. He is currently a Vice President of NSTDA.

Highlights

  • With a wealth of biodiversity, a long tradition of agriculture-based industries, and an established medical and biotechnological research and development community, Thailand has become an attractive location for life sciences investment

  • The Thailand Board of Investment (BOI) promotes foreign investment in bioinformatics-related business located within the BioPark through corporate tax exemption for up to eight years

  • The areas of Thai topical interest include starch biosynthesis pertaining to cassava, the lipid synthetic pathway of Spirulina and yeasts, as well as the core metabolic pathways of malaria and tuberculosis [44]

Read more

Summary

Introduction

With a wealth of biodiversity, a long tradition of agriculture-based industries, and an established medical and biotechnological research and development community, Thailand has become an attractive location for life sciences investment. Thailand’s research community should emphasize establishing core technologies, such as genomics and bioinformatics, to boost development of agriculture, food processing, and biomedical research. The Thai government realized the importance of this field and created a national policy to greatly increase Thailand’s participation in bioinformatics and genomics, budgeting for specific development goals in research infrastructure, education, and sustainable human resources. Thailand has not lagged behind in bioinformatics research activity and recognizes the importance of bioinformatics through increased policy awareness, human resources development, and increased research activity involving genomic-scale data generation and computational analyses. Capacity building through infrastructure/ education/human resources, and (3) research and development in genomics and computational biology. (See Box 1 for Authors’ Biographies)

Support through National Policies
Promoting Bioinformatics
Genomic Data Generation
Bioinformatics Development and Data Utilization
Future Prospects
Findings
Author Contributions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call