Abstract

The Preisach formalism is used as a basis for a vector model of magnetic hysteresis in soft magnetic materials subject to tensile stress. The model uses as vector elementary hysteresis operator the Stoner-Wohlfarth mechanism of coherent rotation while the Preisach density is constructed as the weighed sum of probability density functions corresponding to the high and low induction regions. The model reproduces the basic phenomenology of stress-dependent hysteresis: the double peak in differential permeability modeled as the effect of internal demagnetizing fields emerging from residual stresses; the increase in coercivity due to increased pinning; the decrease in magnetic induction as the result of non-180o domain rotation. The role of the negative differential permeability near remanence and its derivative is discussed with respect to residual stresses and magnetic NDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.