Abstract

Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. However, both, surgical procedures (myringoplasty or tympanoplasty) and the materials employed, have a number of limitations. Therefore, the advances in this field are incorporating the principles of tissue engineering, which includes the use of scaffolds, biomolecules and cells. This discipline allows the development of new biocompatible materials that reproduce the structure and mechanical properties of the native tympanic membrane, while it seeks to implement new therapeutic approaches that can be performed in an outpatient setting. Moreover, the creation of an artificial tympanic membrane commercially available would reduce the duration of the surgery and costs. The present review analyzes the current treatment of tympanic perforations and examines the techniques of tissue engineering, either to develop bioartificial constructs, or for tympanic regeneration by using different scaffold materials, bioactive molecules and cells. Finally, it considers the aspects regarding the design of scaffolds, release of biomolecules and use of cells that must be taken into account in the tissue engineering of the eardrum. The possibility of developing new biomaterials, as well as constructs commercially available, makes tissue engineering a discipline with great potential, capable of overcoming the drawbacks of current surgical procedures.

Highlights

  • Tympanic membrane perforation is a common problem leading to hearing loss

  • This systematic review aims to analyze the regeneration of the tympanic membrane (TM) by using tissue engineering as an alternative to conventional surgical procedures

  • It will focus on the use of different scaffold materials, cells types and growth factors

Read more

Summary

Introduction

Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. The present review analyzes the current treatment of tympanic perforations and examines the techniques of tissue engineering, either to develop bioartificial constructs, or for tympanic regeneration by using different scaffold materials, bioactive molecules and cells. Many authors had used a number of materials to restore tympanic perforations and several patents of TM were issued, but the first TMs were just instruments with a protective function, rather than with a regenerative capacity, and they were unable to improve hearing These early works laid the background for the development of a surgical treatment of tympanic perforations. This systematic review aims to analyze the regeneration of the TM by using tissue engineering as an alternative to conventional surgical procedures It will focus on the use of different scaffold materials, cells types and growth factors

Materials and Methods
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call