Abstract

We present here an outline of lunar chronology and evolution based on analyses of the isotopic parent-daughter systems 87Rb-87Sr, U-Th-206Pb-207Pb-208Pb and 40K-40Ar. An overview of the chronology will first be given, followed by an outline of the observational basis. A more complete discussion of 40K-40Ar results and their interpretation is presented in the paper by G. Turner in this volume. While the body of data on lunar materials is limited, the chronology for lunar evolution appears to be rather well defined. The samples which have been investigated represent mare basalts [returned by the Apollo missions (11, 12, 15 and 17) and by the Soviet Luna 16 mission] and terra rocks, which include non-mare basalts, anorthosites, troctolites and norites but are predominantly comprised of complex breccias [returned by Apollo 12, 14, 16 and 17 and Luna 20]. The mare basalts are associated with the late stage lava flows which covered the mare basins. These flood basalts have been broken up by impact processes but for the most part are associated with the local areas and have not been subject to major transport or metamorphism by impact. The highland rocks predate the mare lava flows but are not clearly associated with a particular magmatic or impact process. They may have been excavated from considerable depths and transported over wide distances. Impact metamorphism is certainly one of the critical stages in their development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.