Abstract

Measurement is a process aimed at acquiring and codifying information about properties of empirical entities. In this paper we provide an interpretation of such a process comparing it with what is nowadays considered the standard measurement theory, i.e., representational theory of measurement. It is maintained here that this theory has its own merits but it is incomplete and too abstract, its main weakness being the scant attention reserved to the empirical side of measurement, i.e., to measurement systems and to the ways in which the interactions of such systems with the entities under measurement provide a structure to an empirical domain. In particular it is claimed that (1) it is on the ground of the interaction with a measurement system that a partition can be induced on the domain of entities under measurement and that relations among such entities can be established, and that (2) it is the usage of measurement systems that guarantees a degree of objectivity and intersubjectivity to measurement results. As modeled in this paper, measurement systems link the abstract theory of measuring, as developed in representational terms, and the practice of measuring, as coded in standard documents such as the International Vocabulary of Metrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.