Abstract
This paper proposes two new approaches to improve the estimation of the coefficients of the multivariate HAR (MHAR) model with the primary purpose of improving forecast performance. A robust estimator of the covariance matrix is adopted to replace the realized covariance matrix while estimating the MHAR model. The robustness to outliers of the new estimator makes the OLS estimation scheme for the MHAR model more reliable. In addition, a robust estimation scheme is developed for the MHAR model, which is based on the multivariate least-trimmed squares method. Both approaches provide significant improvements in forecasting performance based on both statistical loss and portfolio outcomes. The forecast performance of the multivariate HARQ model can also be improved with the proposed approaches, as evidenced by robustness checks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.