Abstract

In this paper, the Probabilistic Mapped Mean-Shift Algorithm is proposed to detect anomalous data in public datasets and local hospital children’s wellness clinic databases. The proposed framework consists of two main parts. First, the Probabilistic Mapping step consists of k-NN instance acquisition, data distribution calculation, and data point reposition. Truncated Gaussian Distribution (TGD) was used for controlling the boundary of the mapped points. Second, the Outlier Detection step consists of outlier score calculation and outlier selection. Experimental results show that the proposed algorithm outperformed the existing algorithms with real-world benchmark datasets and a Children’s Wellness Clinic dataset (CWD). Outlier detection accuracy obtained from the proposed algorithm based on Wellness, Stamps, Arrhythmia, Pima, and Parkinson datasets was 93%, 94%, 80%, 75%, and 72%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.