Abstract
Data mining is a system that brings up the light to hidden and valuable information from the data and the facts revealed by data mining which were previously not known, theoretically useful, and of high quality. Data mining offers a means by which we can explores the knowledge in database. Data stream mining and finding outliers are dynamic research areas of data mining. It is thought that ‘data stream mining and outlier detection’ research has drastically expanded the range of data analysis and will have profound impact on data mining methodologies and applications in the long run. However, there are still some difficult research problem that are to be answered before data stream mining and outlier detection can declare a keystone approach in data mining applications. The aim of this work is to simplify problems related to detecting outlier over dynamic data stream and exploring explicit techniques used for detecting outlier over streaming data in data mining presented by researchers in recent years and also to look at the future trends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.