Abstract

Special Complex non-Gaussian processes may have dynamic operation scenario shifts so that the traditional Outlier detection approaches become ill-suited. This paper proposes a new outlier detection approach based on using subspace learning and Gaussian mixture model(GMM) in energy disaggregation. Locality preserving projections(LPP) of subspace learning can optimally preserve the neighborhood structure, reveal the intrinsic manifold structure of the data and keep outliers far away from the normal sample compared with the principal component analysis (PCA). The results show proposed approach can significantly improve performance of outlier detection in energy disaggregation, increase the fraction true-positive from 93.8% to 97%, decrease the fraction false-positive from 35.48% to 25.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.