Abstract

Today, Permanent Magnet Synchronous Motors (PMSMs) are a dominant choice in industry applications. During operation, different possible faults in the system can occur, so early and automated fault detection and severity estimation are required to ensure smooth operation and optimal maintenance planning. In this direction, outlier detection methods are employed in this paper. The motor’s current signals are used to extract useful indicators of the fault, along with d-q transform. Statistical indicators in both time and frequency domains are selected to describe fault-related patterns. Based on the extracted features, three outlier detection methods are investigated: the Isolation Forest, the One Class Support Vector Machine, and the Robust Covariance Ellipse. Each method is investigated through different model parameters to evaluate fault detection and severity estimation capabilities. Finally, an ensemble approach is proposed based on decisions and outlier score ensemble. The proposed methodology is verified through different operating conditions in a PMSM test bench.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.