Abstract

ABSTRACT Individual roof plane extraction from Light Detection and Ranging (LiDAR) point-cloud data is a complex and difficult task because of unknown semantic characteristics and inharmonious behaviour of input data. Most of the existing state-of-the-art methods fail to detect small true roof planes with exact boundaries due to outliers, occlusions, complex building structures, and other inconsistent nature of LiDAR data. In this paper, we have presented an improved building detection and roof plane extraction method, which is less sensitive to the outliers and unlikely to generate spurious planes. For this, a robust outlier detection algorithm has been proposed in this paper along with a robust plane-fitting algorithm based on M-estimator SAmple Consensus (MSAC) for detecting individual roof planes. Using two benchmark datasets (Australian and International Society for Photogrammetry and Remote Sensing benchmark) with different numbers of buildings and sizes, trees and point densities, we have evaluated the proposed method. Experimental results show that the method removes outliers and vegetation almost accurately and offers a high success rate in terms of completeness and correctness (between 80% and 100% per-object) for both roof plane extraction and building detection. In most of the cases, the proposed method shows above 90% correctness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call