Abstract
The main task of outlier detection is to detect data objects which have a different mechanism from the conventional data set. The existing outlier detection methods are mainly divided into two directions: local outliers and global outliers. Aiming at the limitations of the existing outlier detection methods, we propose a novel outlier detection algorithm which is named as kNN-LOF. First, the k-nearest neighbors algorithm is applied to divide different areas for outlier attributes, which is more suitable for outlier detection in different density distributions. Secondly, a hierarchical adjacency order is proposed to hierarchize the neighborhood range according to the link distance. The average sequence distance is calculated from the data objects in the hierarchy, and the reachable distance of an object is redefined to introduce a new local outlier factor. Experimental results show that the proposed algorithm has good performance in improving the accuracy of outlier detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Algorithms & Computational Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.