Abstract

In neurons and neurosecretory (nerve) cells, neurite outgrowth requires the enlargement of the plasma membrane sustained by the exocytosis of specific vesicles. The well known, slow canonical form of outgrowth induced in pheochromocytoma PC12 cells by NGF, as well as the outgrowth taking place in neurons, involve vesicles positive for the vSNARE Ti-VAMP. Working in defective PC12 clones expressing high levels of the transcriptional repressor REST, we have identified now a new, rapid form of outgrowth, triggered by activation of a small GTPase, Rac1. This form is sustained by the exocytosis of another type of vesicles, taking place locally at the tip of neurite growth cones, the enlargeosomes (vSNARE: VAMP4). This new form, which is positively controlled by REST, requires the dynamics of microtubules, but not of microfilaments. Its signalling remains undefined because established second messengers, (Ca2+, DAG, cAMP) seem not involved. Using a high REST/enlargeosome-rich PC12 clone transfected with TrkA we have found that the NGF-induced outgrowth is not always slow, but can be fast in cells expressing high levels of the receptor involved, TrkA; that PC12 can express together the two distinct forms of outgrowth, canonical and new, activated independently from each other. Their comparative characterization in terms of changes in the cytoskeleton has now been initiated. The two forms are present also in neurons where the new one seems to predominate in the initial phases of development, the canonical one later on. Our results identify a new aspect of the REST impact in nerve cell specificity/function. The existence of two distinct forms of neurite outgrowth may cope better than a single form with the variable needs of nerve cells in the subsequent stages of their development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.