Abstract

The challenges and threats posed by out-groups have major effects on human social behavior and how individuals interact with one another. We briefly review evidence here that out-group threat similarly affects nonhuman animal behavior. Actual and potential threats posed by out-group individuals (unfamiliar and genetically nonrelated individuals of the same species) affect social behavior promoting "out-group" avoidance and "in-group" bias and enhancing in-group (familiar and/or genetically related individuals) affiliation and interactions. Individuals from out-groups present risks of pathogen exposure as well as being threats to resources, territory, and offspring. All of these threats function to promote in-group bias in humans and nonhumans. There are also striking similarities in the underlying neurobiological mechanisms mediating the responses to out-group threat and the expression of in-group bias. In particular, the evolutionarily conserved, hormone-regulated nonapeptide systems (oxytocin, arginine-vasopressin, and homologous neuropeptides and their receptors) are involved in the mediation of the detection and avoidance of out-groups and response to in-groups and facilitation of in-group responses across multiple vertebrate species. Consequently, comparative investigations of both the behavioral expression of and the mechanism underlying out-group avoidance and in-group bias are necessary for a full understanding of the evolution of social behavior and responses to in- and out-groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.