Abstract
Phylogenetic analyses of rapid radiations are particularly challenging as short basal branches and incomplete lineage sorting complicate phylogenetic inference. Multilocus data of presence-absence polymorphisms such as obtained by AFLP genotyping overcome some of the difficulties, but also present their own intricacies. Here we analyze >1000 AFLP markers to address the evolutionary history of the Limnochromini, a cichlid fish lineage endemic to Lake Tanganyika, and to test for potential effects of outgroup composition on tree topology. The data support previous mitochondrial evidence on the tribe’s taxonomy by confirming the polyphyly of the genus Limnochromis and – in contradiction to a recent taxonomic revision – nesting the genus Greenwoodochromis within the Limnochromini. Species relationships suggest that ecological segregation occurred during the rapid basal radiation of the Limnochromini. The large phylogenetic distance between candidate outgroup taxa and the Limnochromini radiation caused random outgroup effects. Bootstrap support for ingroup nodes was lower in outgroup-rooted than in midpoint-rooted trees, and root positions and ingroup tree topologies varied in response to the composition of the outgroup. These observations suggest that the predisposition for homoplastic evolution makes AFLP-based phylogenetic analyses particularly susceptible to random biases introduced by too-distant outgroup taxa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.