Abstract
We present adaptive optics (AO)-assisted near-infrared Fabry-Perot observations of both the H2 v=1-0 S(1) line in the area surrounding the shell-like ultracompact H II region (UCH II) G5.89-0.39 and the Brγ emission in the region of ionized gas. This work aims at investigating the near-IR counterpart to the widely debated massive outflow detected toward this source. We also study the connection of the outflow(s) with the possible driving source(s) to better constrain the stellar content within this UCH II region. Our data show evidence of a total of three outflows in this region, with distinct orientations and different driving sources. Two prominent bow-shock structures are identified in our H2 data in a north-south orientation. The molecular jet, likely associated with these features, is not compatible with the orientation of the outflow previously detected at high spatial resolution in SiO emission. Moreover, we propose the driving source of this jetlike structure as the O5 V star recently detected by Feldt and coworkers. However, we report the detection of a bipolar structure, separated by a dark lane, at the location of the 1.3 mm continuum source (i.e., the candidate source to power the SiO outflow). Finally, a third bipolar outflow is traced through the Brγ emission. The confirmation through CO interferometric observations of this outflow activity would therefore favor an accretion scenario for high-mass star formation. Based on observations made with ESO Telescopes at La Silla and Paranal under programs ID:64.I-0532 and ID:73.C-0178. Based on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut fur Astronomie and the Instituto de Astrofisica de Andalucia (CSIC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.