Abstract

BackgroundCardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation.ResultsWe studied embryonic stages of reptile hearts (lizard, turtle and crocodile) and compared these to avian and mammalian development. Immunohistochemistry allowed us to indicate where the essential cell components in the outflow tract and aortic sac were deployed, more specifically endocardial, neural crest and second heart field cells. The neural crest-derived aorto-pulmonary septum separates the pulmonary trunk from both aortae in reptiles, presenting with a left visceral and a right systemic aorta arising from the unseptated ventricle. Second heart field-derived cells function as flow dividers between both aortae and between the two pulmonary arteries. In birds, the left visceral aorta disappears early in development, while the right systemic aorta persists. This leads to a fusion of the aorto-pulmonary septum and the aortic flow divider (second heart field population) forming an avian aorto-pulmonary septal complex. In mammals, there is also a second heart field-derived aortic flow divider, albeit at a more distal site, while the aorto-pulmonary septum separates the aortic trunk from the pulmonary trunk. As in birds there is fusion with second heart field-derived cells albeit from the pulmonary flow divider as the right 6th pharyngeal arch artery disappears, resulting in a mammalian aorto-pulmonary septal complex. In crocodiles, birds and mammals, the main septal and parietal endocardial cushions receive neural crest cells that are functional in fusion and myocardialization of the outflow tract septum. Longer-lasting septation in crocodiles demonstrates a heterochrony in development. In other reptiles with no indication of incursion of neural crest cells, there is either no myocardialized outflow tract septum (lizard) or it is vestigial (turtle). Crocodiles are unique in bearing a central shunt, the foramen of Panizza, between the roots of both aortae. Finally, the soft-shell turtle investigated here exhibits a spongy histology of the developing carotid arteries supposedly related to regulation of blood flow during pharyngeal excretion in this species.ConclusionsThis is the first time that is shown that an interplay of second heart field-derived flow dividers with a neural crest-derived cell population is a variable but common, denominator across all species studied for vascular patterning and outflow tract septation. The observed differences in normal development of reptiles may have impact on the understanding of development of human congenital outflow tract malformations.

Highlights

  • Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation

  • The aim of this study is to examine, in a comparative evolutionary developmental biology context: (1) the respective roles of various cell populations in the morphogenesis of both the interaortic flow divider and the aorto-pulmonary septum between the aortic and the pulmonary trunks so as to produce three arterial trunks from the aortic sac: the left and right aorta as well as the pulmonary trunk; (2) the cellular mechanisms underlying the septation of the intracardiac outflow tract in reptiles, which is minimal in lizards and turtles and becomes myocardialized in crocodiles and birds

  • Outflow tract septation in Amniotes requires the coordinated differentiation of myocardium, endocardium, neural crest and second heart field-derived cells

Read more

Summary

Introduction

Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation. The pharyngeal arch arteries (PAAs) in reptiles and birds (sauropsids) and in mammals develop in a craniocaudal sequence as shunts between the aortic sac and the paired dorsal aortae. The mode of PAA remodelling is essential for understanding OFT separation connecting the aortic sac to the non-septated ventricular (most reptiles) or biventricular heart (crocodiles, mammals and birds). The latter results invariably in one single pulmonary trunk, dividing into a right and left pulmonary artery (PAA6), connected to the right ventricle, or the right-sided cavum pulmonale of the common ventricle. The right PAA4 arises from the left ventricle; this becomes the systemic aorta, supplying, for example, the cranial and brachial regions and the body wall with oxygen-rich blood. The aortic trunk arises from the left ventricle and the left PAA4 will form the left-sided aortic arch, while the right PAA4 forms the basis of the right subclavian artery

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call