Abstract

Setting young stellar object jets and outflows in their broadest context requires an understanding of outflows as “feedback” in the development of molecular cloud turbulence and the determination of star formation efficiencies. In this contribution I review our group’s recent studies exploring relationships between protostellar outflows and turbulence in molecular clouds. We first present studies of turbulence and fossil cavities driven by YSO outflows using numerical simulations which track the evolution of single transient jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. These studies demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Next we present simulations of multiple interacting jets. We show that turbulence can readily be sustained by these interactions and show that it is possible to broadly characterize an effective driving scale of the outflows. Comparing the velocity spectrum obtained in our studies to that of an isotropically forced control we show that in outflow driven turbulence a power law of the form E(k) ∝ k − β is indeed achieved. However we find a steeper spectrum β ∼ 3 is obtained in outflow driven turbulence models than in isotropically forced simulations β ∼ 2. 0. Taken together both studies provide broad support for the conclusion that fossil cavities driven by decaying jets can provide a source of turbulence and feedback which mediate star formation processes in molecular clouds. Whether this does obtain in real clouds remains a point which must be demonstrated

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.