Abstract

Synchronization is one of the most important emerging collective behaviors in nature, which results from the interaction in groups of organisms. In this paper, network synchronization of discrete-time dynamical systems is studied. In particular, network synchronization with fireflies oscillators like nodes is achieved by using complex systems theory. Different cases of interest on network synchronization are studied, including for a large number of fireflies oscillators; we consider synchronization in small-world networks and outer synchronization among different coupled networks topologies; for all presented cases, we provide appropriate ranges of values for coupling strength and extensive numerical simulations are included. In addition, for illustrative purposes, we show the effectiveness of network synchronization by means of experimental implementation of coupled nine electronics fireflies in different topologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.