Abstract

Transplantation of photoreceptor precursor cells (PPCs) into the retina represents a promising treatment for cell replacement in blinding diseases characterized by photoreceptor loss. In preclinical studies, we and others demonstrated that grafted PPCs integrate into the host outer nuclear layer (ONL) and develop into mature photoreceptors. However, a key feature of light detecting photoreceptors, the outer segment (OS) with natively aligned disc membrane staples, has not been studied in detail following transplantation. Therefore, we used as donor cells PPCs isolated from neonatal double transgenic reporter mice in which OSs are selectively labeled by green fluorescent protein while cell bodies are highlighted by red fluorescent protein. PPCs were enriched using CD73-based magnetic associated cell sorting and subsequently transplanted into either adult wild-type or a model of autosomal-dominant retinal degeneration mice. Three weeks post-transplantation, donor photoreceptors were identified based on fluorescent-reporter expression and OS formation was monitored at light and electron microscopy levels. Donor cells that properly integrated into the host wild-type retina developed OSs with the formation of a connecting cilium and well-aligned disc membrane staples similar to the surrounding native cells of the host. Surprisingly, the majority of not-integrated PPCs that remained in the sub-retinal space also generated native-like OSs in wild-type mice and those affected by retinal degeneration. Moreover, they showed an improved photoreceptor maturation and OS formation by comparison to donor cells located on the vitreous side suggesting that environmental cues influence the PPC differentiation and maturation. We conclude that transplanted PPCs, whether integrated or not into the host ONL, are able to generate the cellular structure for effective light detection, a phenomenon observed in wild-type as well as in degenerated retinas. Given that patients suffering from retinitis pigmentosa lose almost all photoreceptors, our findings are of utmost importance for the development of cell-based therapies.

Highlights

  • Retinitis pigmentosa (RP), a collective term for a group of inherited retinal eye diseases, represents, together with age-related macula degeneration (AMD), one of the main causes for visual impairment and blindness in industrialized countries

  • In preclinical studies it was demonstrated that donor photoreceptor precursor cells (PPCs) isolated directly from the neonatal mouse retina at postnatal day (PN) 3–5 have the highest potential to develop into mature photoreceptors [10,11,14,15], which form axonal terminals and inner (IS) and outer (OS) segments [12] following grafting into the retina of adult hosts

  • At transmission electron microscope (TEM) level, sections derived from the same block preparation labeled with anti-GFP antibodies followed by protein A 10-nm gold revealed that immuno-labeling is specific for photoreceptor outer segment (OS) demonstrating that these light detecting structures can be visualized at an ultra-structural resolution based on a targeted enhanced green fluorescent protein (EGFP) expression (Fig. 1D, D9)

Read more

Summary

Introduction

Retinitis pigmentosa (RP), a collective term for a group of inherited retinal eye diseases, represents, together with age-related macula degeneration (AMD), one of the main causes for visual impairment and blindness in industrialized countries. While a properly developed OS with well-aligned disc membrane staples is crucial for light detection and conversion into an electric signal, an axonal terminal that connects to the respective bipolar cell is indispensable for transmitting the electric signal to the host neural circuitry. Functional analyses, such as electroretinogram (ERG) recordings, pupillary reflexes, optokinetic tracking or visual Morris water maze, have been described after transplantation of PPCs into murine models of retinal degeneration (RD) suggesting improvements in visual function [4,5,6,10,13]. These studies still lack the direct morphological evidence for proper OS formation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.