Abstract

While cell membrane composition is critical for the function of membrane proteins, membrane modification has not been used to control the rate of extracellular electron transfer (EET) via the outer membrane protein complexes. Here, the rate of electron flow via the cell-surface redox protein, MtrC, was highly enhanced upon change in the outer membrane composition in Shewanella oneidensis MR-1. The MR-1 strain was pre-cultured at 4 °C and 30 °C to initiate differentiation of membrane composition. The whole-cell difference electrochemical assay of wild-type and mutant strains lacking MtrC suggested that the rate of EET via MtrC increased approximately 18 times at 4 °C than 30 °C. Circular dichroism spectroscopy showed that the molar exciton coupling coefficient for inter-heme interaction in MtrC increased in MR-1 at 4 °C than 30 °C. Results suggest that membrane modification may be a novel strategy for improving the efficiency of EET-based technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.