Abstract

We characterize the elements with outer inverse in a semigroup S, and provide explicit expressions for the class of outer inverses b of an element a such that bS⊆yS and Sb⊆Sx, where x, y are any arbitrary elements of S. We apply this result to characterize pairs of outer inverses of given elements from an associative ring R, satisfying absorption laws extended for the outer inverses. We extend the result on right–left symmetry of aR⊕bR=(a+b)R (Jain–Prasad, 1998) to the general case of an associative ring. We conjecture that ‘given an outer inverse x of a regular element a in a semigroup S, there exists a reflexive generalized inverse y of a such that x≤−y’ and prove the conjecture when S is an associative ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.