Abstract

This paper proposes a new separable model for the unit commitment (UC) problem and three deterministic global optimization methods for it ensuring convergence to the global optimum within a desired tolerance. By decomposing a multivariate function into several univariate functions, a tighter outer approximation methodology that can be used to improve the outer approximations of several classical convex programming techniques is presented. Based on the idea of the outer approximation (OA) method and the proposed separable model, an outer-inner approximation (OIA) approach is also presented to solve this new formulation of UC problem. In this OIA approach, the UC problem is decomposed into a tighter outer approximation subproblem and an inner approximation subproblem, where the former leads to a better lower bound than the OA method, and the later provides a better upper bound. The simulation results for systems of up to 100 units with 24 h are compared with those of previously published methods, which show that the OIA approach is very promising due to the excellent performance. The proposed approaches are also applied to the large-scale systems of up to 1000 units with 24 h, and systems of up to 100 units with 96 h and 168 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.