Abstract

The disparity in scale, complexity, and control level between laboratory experiments and field observational studies has shaped both the methodologies employed and the nature of the research questions pursued in ecology and hydrology. While lysimeters and fabricated ecosystems suitably fit in this gap, their use as mesoscale experimental facilities has not been fully explored because of the limited manipulating capabilities and integration with imaging and monitoring methods, particularly for soil functioning. The proposed fabricated ecosystem (4.7 L × 1.2 W × 1.2 H m) focuses on the spatiotemporal integration of point sensors and imaging methods along the soil-plant-atmosphere continuum. Because energy and water fluxes are key environmental drivers, the designed setup was first applied to a multi-approach evapotranspiration investigation. Below the ground, electrical resistivity tomography (ERT) was combined with soil water sensors and a distributed temperature profiling system. Together, they provided the 3D monitoring of water and temperature changes, and thus an estimation of the evapotranspiration, as well as the interpretation of its below-ground controlling processes. Above-ground sensors supported a classical energy balance investigation that was compared with the lysimeter load changes and the ERT-based ET estimation. Our results provide first experimental evidence of water and temperature spatiotemporal variability at the lysimeter scale, and thus explain the discrepancies among the three estimated evapotranspiration time series and their seasonality. Beyond evapotranspiration, the multi-approach investigation of water and energy fluxes emphasizes how mesoscale setups can further support the development and upscaling of methods and models, as well as their integration and application under expected climate disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.