Abstract

HV composite polymeric insulators are being accepted increasingly for use in outdoor installations by the traditionally cautious electric power utilities worldwide. They currently represent -60 to 70% of newly installed HV insulators in Nortb America. The tremendous growth in the applications of non-ceramic composite insulators is due to their advantages over the traditional ceramic and glass insulators. These include light weight, higher mechanical strength to weight ratio, resistance to vandalism, better performance in the presence of heavy pollution in wet conditions, and comparable or better withstand voltage than porcelain or glass insulators. However, because polymeric insulators are relatively new, the expected lifetime and their long-term reliability are not known and therefore are of concern to users. Additionally they might suffer from erosion and tracking in the presence of severe contamination and sustained moisture. This leads to the development of dry band arcing that under certain circumstances could lead to failure of polymer insulators. In this paper a review is presented of the recent performance experience of HV composite polymeric insulators in outdoor service, testing methods, aging, the ranking of the materials, the role of fillers, the role of low molecular weight components present in the insulators, the mechanisms responsible for the loss and recovery of hydrophobicity, one of the most important properties of polymers, the mechanisms of failure, detection of faults, type and quantity of natural contaminants, effects of exposure to rain, hydrocarbons, stationary air and wind, various methods to optimize the electrical performance and a relatively new method for evaluating the performance status of polymeric insulators in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.