Abstract

Microalgae have piqued renewed interest as a sustainable biofuel feedstock owing to their high CO2 conversion efficiency. However, the major limitation of microalga-based biofuel production is low productivity. In this study, CO2 in flue gas emitted from the coal-fired power plants was fixed through mass microalgal cultivation using only sunlight as an energy source. To minimize the cost and energy required to supply the flue gas and efficiently utilize the microalgal biomass, a polycarbonate (PC) greenhouse and polymeric photobioreactors were installed near the power plant stack. Four different microalgal strains (Chlamydomonas reinhardtii, Chlorella sorokiniana, Neochloris oleoabundans, and Neochloris oleoabundans #13) were subjected to semi-continuous culturing for 1 month. The maximum biomass productivity was achieved by the N. oleoabundans #13 strain (0.703 g L−1 day−1). Additionally, polymerase chain reaction analysis revealed that the individual microalgal culture was not cross-contaminated with other microalgal cultures in this cultivation system, owing to the structural properties of photobioreactor comprising individual modules. The lipid content and calorific productivity of N. oleoabundans #13 biomass were 45.70% and 3.553 kJ L−1 day−1, respectively, which indicate satisfactory performance of biomass as a direct combustion fuel. The CO2 fixation rate, which was calculated based on the carbon content in the biomass, was 0.309 g CO2 L−1 day−1. Therefore, large amounts of CO2 can be reduced using the large-scale microalgal cultivation system, which enables efficient biological CO2 conversion and maximizes microalgal biomass utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call