Abstract

Most models of mating-system evolution predict inbreeding depression to be low in inbred populations due to the purging of deleterious recessive alleles. This paper presents estimates of outcrossing rates and inbreeding depression for two highly selfing, monoecious annuals Begonia hirsuta and B. semiovata. Outcrossing rates were estimated using isozyme polymorphisms, and the magnitude of inbreeding depression was quantified by growing progeny in the greenhouse produced through controlled selfing and outcrossing. The estimated single-locus outcrossing rate was 0.03 ± 0.01 (SE) for B. hirsuta and 0.05 ± 0.02 for B. semiovata. In both species, the seed production of selfed flowers was on average 12% lower than that of outcrossed flowers (B. hirsuta P = 0.07, B. semiovata P < 0.05, mixed model ANOVAs). There was no significant effect of crosstype on germination rate or survival, but selfed offspring had a lower dry mass than outcrossed offspring 18 weeks after planting in both species (on average 18% lower in B. hirsuta and 31% lower in B. semiovata). Plants that were the products of selfing began flowering later than plants produced through outcrossing in B. semiovata, but not in B. hirsuta. The effects of crosstype on seed production (B. semiovata), days to first flower and offspring dry mass (both species) varied among maternal parents, as indicated by significant crosstype x maternal parent interactions for these characters. Both species showed significant inbreeding depression for total fitness (estimated as the product of seed production, germination rate, survival and dry mass at 18 weeks). In B. hirsuta, the average total inbreeding depression was 22% (range -57%-98%; N = 23 maternal parents), and in B. semiovata, it was 42% (-11%-84%; N = 21). This study demonstrates that highly selfing populations can harbor substantial inbreeding depression. Our findings are consistent with the hypothesis that a high mutation rate to mildly deleterious alleles contributes to the maintenance of inbreeding depression in selfing populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.