Abstract

To date, there are three main hypotheses explaining why the human semicircular canals (HSCCs) cannot sense linear accelerations. To further study this issue, we designed a bionic ampulla (BA) instrumented with a symmetrical metal core polyvinylidene fluoride fiber as a bionic sensor, which imitates the structure and function of the human ampulla. The BA was confirmed to have a good sensing ability in experiments with a straight tube. Additionally, we designed a bionic semicircular canal model, a blocking model, and a square model. We compared the perception performance of these three models to test the "density hypothesis," the "closed loop hypothesis," and the "circular hypothesis." The outcomes of these experiments verified the "density hypothesis" and "circular hypothesis," but did not support the "closed loop hypothesis," shedding light on why the HSCC is sensitive to angular acceleration, but not to linear acceleration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call