Abstract

Microvascular surgery has become an important method for reconstructing surgical defects resulting from trauma, tumors, or burns. The most important factor for successful free flap transfer is a well-executed anastomosis. This study was performed to review the authors' experience with a 1.9-microm diode laser in microsurgery, with special attention to outcomes and performance of the technique. Between January of 2005 and December of 2007, 27 patients underwent microsurgery with a 1.9-microm diode laser at the authors' institute. The patients had a mean age of 31 years (range, 2 to 59 years); 14 patients were women and 13 patients were men. This technique was used for digital replantations (n = 2) and for free flap transfer (n = 27). Causes of the defects were trauma (n = 14), tumor (n = 9), congenital (n = 2), burn (n = 1), infection (n = 1), arthritis (n = 1), and dog bite (n = 1). Laser-assisted microvascular anastomosis was performed with a 1.9-microm diode laser after placement of equidistant stitches. The following parameters were used: spot size, 400 microm; power, 125 mW; time depending on vessel size (0.8 to 1.8 mm); and fluence varying from 70 to 200 J/cm. Three surgical revisions following hematoma and one rupture of the arterial anastomosis leading to a free deep inferior epigastric perforator flap necrosis resulting from high-dose radiotherapy before surgery occurred after laser-assisted microvascular anastomosis, accounting for an overall success rate of 96.6 percent. This study reports the numerous benefits of the technique: easier performance of vascular anastomosis with difficult access, decrease of reperfusion bleeding and complications, and a short learning curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call