Abstract

An individualized treatment rule is often employed to maximize a certain patient-specific clinical outcome based on his/her clinical or genomic characteristics as well as heterogeneous response to treatments. Although developing such a rule is conceptually important to personalized medicine, existing methods such as the partial least squares Qian and Murphy (2011) suffers from the difficulty of indirect maximization of a patient's clinical outcome, while the outcome weighted learning Y. Zhao, Zeng, Rush, and Kosorok (2012) is not robust against any perturbation of the outcome. In this article, we propose a weighted ψ-learning method to optimize an individualized treatment rule, which is robust against any data perturbation near the decision boundary by seeking the maximum separation. To solve nonconvex minimization, we employ a difference convex algorithm to relax the non-convex minimization iteratively based on a decomposition of the cost function into a difference of two convex functions. On this ground, we also introduce a variable selection method for further removing redundant variables for a higher performance. Finally, we illustrate the proposed method by simulations and a lung health study and demonstrate that it yields higher performances in terms of accuracy of prediction of individualized treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.