Abstract

Ebola virus is back, this time in West Africa, with over 350 cases and a 69% case fatality ratio at the time of this writing [1]. The culprit is the Zaire ebolavirus species, the most lethal Ebola virus known, with case fatality ratios up to 90%. The epicenter and site of first introduction is the region of Gueckedou in Guinea’s remote southeastern forest region, spilling over into various other regions of Guinea as well as to neighboring Liberia and Sierra Leone (Figure 1). News of this outbreak engenders three basic questions: (1) What in the world is Zaire ebolavirus doing in West Africa, far from its usual haunts in Central Africa? (2) Why Guinea, where no Ebola virus has ever been seen before? (3) Why now? We’ll have to wait for the outbreak to conclude and more data analysis to occur to answer these questions in detail, and even then we may never know, but some educated speculation may be illustrative. The Ebolavirus genus is comprised of five species, Zaire, Sudan, Tai Forest, Bundibugyo, and Reston, each associated with a consistent case fatality and more or less well-identified endemic area (Figure 2). Zaire ebolavirus had been previously found only in three Central African countries—the Democratic Republic of the Congo, Republic of the Congo, and Gabon. Thus, the logical assumption when Ebola virus turned up in Guinea was that this would be the Tai Forest species previously noted in Guinea’s neighbor, Cote d’Ivoire. How did Zaire ebolavirus get all the way over to West Africa? The two possibilities appear to be that the virus has always been present the region, but we just never noticed, or that it was recently introduced. The initial report and phylogenetic analyses on the Guinea outbreak suggested that the Zaire ebolavirus found in Guinea is a distinct strain from that noted in Central Africa [1], thus suggesting that the virus may not be a newcomer to the region. However, subsequent reworking and interpretations of the limited genetic data have cast some doubt on this conclusion [2]. If Zaire ebolavirus had been circulating for some time in Guinea, one might expect greater sequence variation than the 97% homogeneity noted relative to that isolated from Central Africa [1]. Phylogenetic arguments aside, if Ebola virus was present in Guinea, wouldn’t we have seen cases before? Not necessarily. Many pathogens may be maintained in animals with which humans normally have little contact, thus providing limited opportunity for infection. Furthermore, the proportion of infected animals may often be very low, so even frequent contact may not result in pathogen transmission. Even if human Ebola virus infection has occurred, it may not be recognized; contrary to popular concept, the clinical presentation of viral hemorrhagic fever is often very nonspecific, with frank bleeding seen in a minority of cases, so cases may be mistaken for other, more common diseases or, in the case of Guinea, Lassa fever, which is endemic in the area of the outbreak [3]. Nor are laboratory diagnostics routinely available in West Africa for most viral hemorrhagic fevers [4]. Ebola virus testing of human serum samples collected as far back as 1996 as part of surveillance for Lassa fever in the same region as the current outbreak could help reveal whether humans had exposure to Ebola virus prior to this outbreak [3]. We are presently organizing with collaborators to conduct ELISA antigen testing, PCR, and cell culture for Ebola virus on samples from persons who met the case definition for viral hemorrhagic fever but tested negative for Lassa fever. We will also test all samples for IgG antibody to Ebola virus to explore the prevalence of past exposure. Could Zaire ebolavirus have been recently introduced into Guinea from Central Africa? Introduction from a human traveler seems unlikely; there is little regular travel or trade between Central Africa and Guinea, and Gueckedou, the remote epicenter and presumed area of first introduction, is far off the beaten path, a minimum 12 hour drive over rough roads from the capitals of Guinea, Liberia, or Sierra Leone (Figure 1). Furthermore, with the average incubation period as well as time from disease onset until death in fatal cases both a little over a week, a human traveler would have to make the trip from Central Africa to Gueckedou rather rapidly. If Ebola virus was introduced into Guinea from afar, the more likely traveler was a bat. Although a virus has not yet been isolated, PCR and serologic evidence accumulated over the past decade suggests that fruit bats are the likely reservoir for Ebola virus. The hammer-headed fruit bat (Hypsignathus monstrosus), Franquet’s epauletted fruit bat (Epomops franqueti), and the little collared fruit bat (Myonycteris torquata) are among the leading candidates [5–9]. Many of these species are common across sub-Saharan Africa, including in Guinea, and/or may migrate long distances, raising the possibility that one of these wayward flyers may have carried Ebola virus to Guinea [8]. Introduction into humans may have then occurred through exposures related to hunting and consumption of fruit bats, as has been suspected in Ebola virus outbreaks in Gabon [8]. Similar customs have been reported in Guinea, prompting the Guinean government to impose a ban on

Highlights

  • The Ebolavirus genus is comprised of five species, Zaire, Sudan, Taı Forest, Bundibugyo, and Reston, each associated with a consistent case fatality and more or less well-identified endemic area (Figure 2)

  • The initial report and phylogenetic analyses on the Guinea outbreak suggested that the Zaire ebolavirus found in Guinea is a distinct strain from that noted in Central Africa [1], suggesting that the virus may not be a newcomer to the region

  • If Zaire ebolavirus had been circulating for some time in Guinea, one might expect greater sequence variation than the 97% homogeneity noted relative to that isolated from Central Africa [1]

Read more

Summary

Introduction

The Ebolavirus genus is comprised of five species, Zaire, Sudan, Taı Forest, Bundibugyo, and Reston, each associated with a consistent case fatality and more or less well-identified endemic area (Figure 2). The initial report and phylogenetic analyses on the Guinea outbreak suggested that the Zaire ebolavirus found in Guinea is a distinct strain from that noted in Central Africa [1], suggesting that the virus may not be a newcomer to the region.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call