Abstract

SummaryCognitive nonorthogonal multiple access (NOMA) technique allows multiple users to share the same time and same frequency resources to fulfil the reliability and spectral efficiency requirements of 5G communication standards. In this paper, simultaneous wireless information and power transfer (SWIPT)–based full‐duplex cognitive NOMA downlink system is proposed. In this system, secondary source (SS) serves as a relay to far primary user as there is no direct link from the primary source. NOMA technique is used at SS to transmit information to far primary user and secondary user. The time switching mechanism is adopted at SS for harvesting energy and information decoding. Analytical closed‐form expressions are derived for the outage probabilities of both primary and secondary users. Outage analysis is carried out in Nakagami‐ fading environment in the presence of self‐interference at SS. In addition to that, the optimal harvesting time to maximize the instantaneous throughput of the far primary user is also derived. Numerical results are plotted to validate the derived expressions. It is inferred that the outage probability of the proposed system depends on the fading environment, harvesting parameters, and self‐interference at SS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.