Abstract

Following light-induced nuclear translocation, the phytochromes induce changes in gene expression to regulate plant development. PIF3 and other PIFs (phytochrome-interacting factors), members of the bHLH (basic helix-loop-helix) family of transcriptional regulators, interact specifically with the active Pfr conformer of the phytochrome molecule, suggesting that the PIFs are key components of phytochrome signal transduction. The mechanism by which the PIFs transduce phytochrome signals is not understood. After initial studies that suggested that PIF3 was a positive regulator of phytochrome signalling, mutant studies indicated that the PIFs primarily act as negative regulators in the pathway. Furthermore, in some cases they accumulate in the dark and are degraded upon illumination by the ubiquitin-26S proteasome system. At least for PIF3, the protein degradation depends on direct interaction with the phytochrome molecule and is preceded by protein phosphorylation. In this review, the current understanding of the role of the PIFs in phytochrome-mediated photomorphogenesis will be summarized, and recent findings suggesting an unanticipated dual mechanism of action of the PIFs will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.